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SUMMARY

The effects of Mach number and surface-roughness variation on
boundary-layer transition were studied using fin-stabilized hollow-tube
models in free flight. The tests were conducted over the Mach number
range from 2.8 to 7 at a nominally constant unit Reynolds number of
3 million per inch, and with heat transfer to the model surface. A
screwthread type of distributed two-dimensional roughness was used.
Nominal thread heights varied from 100 microinches to 2100 microinches.

Transition Reynolds number was found to increase with increasing Mach
nurber at a rate depending simultaneously on Mach number and roughness
height. The laminar boundary layer was found to tolerate increasing amounts
of roughness as Mach number increased. For a given Mach number an optimum
roughness height was found which gave a maximum laminar run greater than
was obtained with a smooth surface.

INTRODUCTION

The advantages of a laminar boundary layer, in terms of reduced aero-
dynamic heating and skin friction, are well known. These advantages have
assumed increasing importance to the designer as flight speeds have
increased. It is of interest, therefore, to examine the effect of speed
itself on boundary-layer transition. At present there is little informa-
tion available on this subject for negligible stream turbulence and for
flight Reynolds numbers. Some wind-tunnel tests (refs. 1 and 2) have
indicated a decrease in the Reynolds number of transition with increasing
Mach number in the Mach number range of approximately 1.5 to 3.5. Other
wind-tunnel tests and some flight tests (ref. 3) have indicated an increase
in the Reynolds number of transition with increasing Mach number in the
same range. A few relatively recent investigations (refs. 4 and 5) have
shown a tendency of transition Reynolds number to decrease as Mach number
is increased in this range, but to increase with a further increase in
Mach number. These apparently conflicting results could be due to differ-
ences in such variables as heat transfer, unit Reynolds number, surface



roughness or stream turbulence. To resolve the discrepancies it is
necessary to understand more than is presently understood about the com-
bined effects of all of these variables,

In addition to Mach number, a parameter known to be important in
determining the extent of laminar flow is the surface roughness. The
presence of surface roughness can influence the effect of some other
parameter upon transition. For example, the data of reference 6 show
that the observed trend of increasing transition Reynolds number with
increasing unit Reynolds number in the presence of small granular rough-
ness is reversed if roughness is increased. Again, in references 7 and 8,
the favorable effects of cooling (i.e., to increase transition Reynolds
number) are shown 10 be reversed at sufficiently large cooling rates in
the presence of surface roughness. It was considered important, therefore,
in studying the effect of Mach number on boundary-layer transition, to
determine also the simultanecus influence of surface roughness.

The present paper is concerned with an experimental study of these
effects in the Mach number range from 2.8 to 7 and for a particular form
of two-dimensional distributed roughness. The tests were conducted in the
Ames supersconic free flight wind tunnel with fin-stabilized hollow cylinders
as test models. The model surfaces were highly cooled with respect to the
stagnation temperature. Flow over the external surfaces of the cylinders
was considered to approximate closely two-dimensional flow because the
laminar boundary-layer thickness was small compared to the cylinder radius
and the pitching amplitudes of the models were small.

Results from similar tests using a slender ogive-cylinder as the model
have been reported in references 9 and 10. To aid comparison of the present
results with those of the previous investigations, a gquasi-two-dimensional
configuration was tested for which the outer surface of the cylinder was
contoured near the leaﬁing edge to give approximately the same pressure
gradient as that on the ogive-cylinder. Comparative results of the three
investigations are discussed herein.

SYMBOLS
Cp pressure coefficient
H roughness height, in. (see fig. 1)
1 body nose length, in. (see fig. 1(b))
M Mach number
n number of observations of Xp less than or equal to an arbitrary x

N total number of observations of xp per model flight



P thread pitch
R Reynolds number, %%
Te boundary-layer—edge‘static temperature, °R
Tr boundary-layer recovery temperature, °R
Tt total temperature, °R
Ty temperature of model surface, °R
Teo free-stream static temperature, °R
u' velocity perturbation in stream direction, ft/sec
U stream velocity, ft/sec
b'¢ axial distance from model leading edge, in.
X value of xp for which % = 0.5 (see fig. 13)
o) thickness of laminar boundary layer, in.
v kinematic viscosity, ft2/sec
Subscripts
e boundary-layer-edge value
T transition-point value
00 free-stream value

MCDELS AND TEST PROCEDURE

The tests described in this report were carried out by propelling
gun-launched models upstream through the test section of the Ames super-
sonic free flight wind tunnel. Mach numbers from 2.8 to 4.1 were obtained
by firing models through still air ("air-off" testing). Mach numbers
from 4.1 tc 7 were obtained by firing models through the countercurrent
air stream of the wind tunnel (M = 2; "air-on" testing). The state of the
boundary layer on each model was observed from spark shadowgraphs, in
orthogonal planes, taken of the model at successive points along its flight
path. A detailed description of the wind-tunnel equipment and the test
techniques employed may be found in reference 1l.



Model Geometry

The models were designed to permit observation of the guasi-two-
dimensional boundary-layer flow over the external surface of sharp-edged
hollow cylinders, the axes of which were parallel to the stream direction.
They consisted of fin-stabilized tubes 9 inches in length and 3/h inch in
diameter, machined from 7075-T6 aluminum. Two external profiles were
tested: a right circular cylinder to provide zero pressure gradient flow;
and a contoured nose (open ogival segment) tangent to a cylinder to provide
an initial negative pressure gradient. The geometries and dimensions of
these models are shown in figure 1. To achieve an adequate pitch-stability
margin it was necessary to shift the center of gravity of each model forward
by fabricating a portion of the nose from a dense material. Phosphor bronze
was used for this purpose., In figure 1 the bronze portion of each model
is shown by crosshatching.

The models were launched from a l-l/2-inch smooth~bore gun. The fin
span of the models was made equal to the gun bore so that the models were
self-supported and self-alined in the barrel. The sabot used to drive the
model was machined from aluminum and was designed to be aerodynamically
stable to avoid hitting the tunnel walls, Attention was also given in its
design to minimizing separation disturbances to the model. Figure 2 is a
photograph showing the two model types and a launching sabot.

he geometry of the slender ogive-cylinder model used for the test
reported in references 9 and 10 is shown in figure 3,

For convenience, the models of figures 1l(a), 1(b), and 3 are referred
to in the present report as the straight tube, contoured tube, and pencil
model, respectively.

Surface Roughness and Leading-Edge Profile

Two types of surface roughness were employed: (1) a continuous screw-
thread, and (2) a circumferential scratch polish. Most of the data were
obtained with the continucus screwthread. This form of roughness has the
advantage of a simply defined geometry, the scale of which can be varied
over a wide range. It is also possible to reproduce accurately this form
of roughness on any number of models.

Screwthread roughness.- The screwthread was applied to the outer
surface of the models beginning 0.10 inch behind the leading edge and
ending just forward of the fins. The geometric profile of the thread was
a single V having a pitch-to-depth ratio of 5. Thread depths between
0.0001 inch and 0.0021 inch were used. The threading detail is shown in
figure 1. The initial choice of pitch-to-depth ratio was somewhat




arbitrary, but a fairly large thread angle was dictated by the machining
reguirements of cleanness of cut and of tool life, In starting the thread
the lathe spindle was turned slowly by hand while the tool was fed grad-
ually into the work, one and a half turns being required to reach full
thread depth. The surface was then undercut slightly to ensure a full
profile with sharp peaks.

All threaded surfaces were examined under the microscope and photo-
graphed to provide accurate records of their dimensions. Coarse threads
were observed in shadow profile. Fine threads were observed with the aid
of an ingenious application by Tolansky (ref. 12) of a principle of optical
sectioning developed by Schmalz (ref. 13). This application makes use of
the optics of the microscope to cast the shadow of a fine wire obliquely
onto the threaded surface. The resulting shadow profile gives a measure
of dimensions normal to the surface. Photomicrographs of a typical screw-
thread in profile obtained using the wire shadow technique are compared
in figure L.t

Example of the smallest and largest threads used are shown in figures
5(a) and 5(b). Some rounding at the peaks and roots of the profiles is
evident. Representative measurements of pitch and depth were made on all
threaded models. In figure 6 these measurements are shown as the ratio
of pitch to depth. The discrepancies observed were due almost entirely
to imperfect peaks and roots, In the turning of the finest threads some
plastic flow of the metal occurred randomly, causing them to be too deep
rather than too shallow.

Threads could not be cut immediately behind the leading edge because
of the thinness of the tube wall., To provide a uniformly smooth and known
surface, the area between the leading edge and the first thread was given
a circumferential scratch polish with grade 2/0 emery paper. The surface
profile of this section was first cut to coincide as closely as possible
with the extended locus of the thread peaks (see fig. 1) in order to mini-
mize disturbances to the flow. The residual mismatch at the first thread
was kept within 0.0003 inch with the unthreaded section high. A repre-
sentative profile at this station is illustrated in figure 5(c). In this
case the peaks of the first few threads have been flattened by the
polishing of the forward surface.

Scratch-polish roughness.- The scratch polish was applied to the
initial surface of all of the threaded models and to the entire surface of
four of the straight-tube models. This surface was produced with fine
emery paper using kerosene as a lubricant. Starting with a finish-
machined surface, the models were polished with successively finer grades
of emery paper until the desired finish was attained. With each change
of emery grade the direction of polishing motion was also changed to permit
the scratches of the new grade to be distinguished from those of the

1The reticle scale, which appears in all of the photomicrographs,
cannot be used for direct dimensional comparison in this and subsequent
figures because the scale calibration depends upon the power of the
microscope objective.




previous grade. Polishing was then continued until examination under the
microscope showed that all of the scratches of the previous grade had been
removed., The final polish was applied in the circumferential direction.

Examples of the surface finish produced by this technique on 7075-T6
aluminum alloy are shown in the photomicrographs of figure 7. Figures 7(a)
and 7(b) show wire-shadow profiles of the 2/0 and 4/0 finishes, respectively.
The sensitivity of the wire shadow is not sufficient to resolve the 4/0
profile. TFigure 7(c) is an interferogram of the same 4/0 surface. Fringe
spacing is 10 microinches. The maximum scratch depths measured on the 2/0
and 4/0 surfaces were approximately 50 microinches and 8 microinches,
respectively, These values apply also to the respective surfaces on
phosphor bron:ze,

Leading edge.- The leading edge of each model was carefully worked
over with emery paper until a flat forward-facing surface was produced as
uniform in width and as thin as practically possible. The corner between
the forward-facing surface and the outer surface of the tube was kept
square, A uniform leading-edge thickness of 0.0003 inch was set as a
goal, Average leading-edge thicknesses of 0,0003 to 0.0004 inch were
achieved. DBecause of the eccentricity between the inner and outer walls
of a given model, the finished leading edge varied in thickness by about
*+35 percent of the average thickness, with the extreme dimensions diamet-
rically opposed. Figures 8(a) and 8(b) are photomicrographs of segments
of the forward face of a representative leading edge at the points of
maximum and minimum thickness. Figure 8(c) is a wire shadow profile of
the 2/0 outer surface of a straight tube at the leading edge, and indicates
that the rounding of the corner was nil within the resolution of the wire-
shadow technique.

Test Conditions

Mach number.- The test Mach number was varied between 2.8 and 7.
This range was dictated by internal choking in the cylinders at Mach
numbers below 2.8 and by incipient structural failure due to launching
stresses at Mach numbers above 7.

Reynolds number.~ Unit Reynolds number (U/v)oo was held constant at
a nominal value of 3 million per inch by pressurizing the wind-tunnel test
section for the air-off (still air) shots and by controlling the reservoir
pressure for the air-on (countercurrent air stream) shots. A few models
were fired in the supersonic free flight underground range at atmospheric
pressure during a period when the wind tunnel was unavailable. For these
few shots the free-stream unit Reynolds number was approximately 2.3 mil-
lion per inch, 1In addition, a few models were tested at unit Reynolds
numbers up to 6 million per inch for the purpose of defining the effect
of the smaller variations in unit Reynolds number present in the main body
of the results.




Surface temperature.- Each model while in the gun barrel was at
ambient temperature. This temperature was assumed to prevail on the model
surface during the 15 to 25 millisecond time of flight. The validity of
this assumption has been examined in reference 9 and found to be reason-
able.2 For this condition the ratio of model surface temperature to free-
stream static temperature was 1.0 for air-off testing and 1.8 for air-on
testing for which the Mach number of the air stream was 2.

The relationship of the test temperature ratiocs to the theoretical
conditions for infinite laminar boundary-layer stability is illustrated
in figure 9. The theoretical boundary calculated by Van Driest (ref. 1h)
from the theory of Lees and ILin (refs. 15 and 16) is shown as the dotted
curve, The boundary for complete stability with respect to two-dimensional
disturbances according to the modified theory of Dunn and Lin (ref, 17)
is shown as the solid curve. The ratio (Ty - Tr)/Tt is used as the measure
of relative heat transfer in order to show the degree of surface cooling
and to emphasize the change in heat flow rate with Mach number for the
conditions of the test.

Pressure gradient.- To provide a basls for comparison between results
from the contoured tube and from the pencil model, the radius of the con-
toured tube nose ogive was chosen to give a pressure gradient closely
approximating that over the nose of the pencil model. The pressure distri-
bution on the pencil model was obtained from the results of Rossow (ref. 18).
For the contoured tube two-dimensional shock-expansion theory was used. The
theoretical pressure distributions for these models at Mach numbers of 3
and 6 are presented in figure 10. At Mach number 3 the pressure gradients
were closely matched on the model noses but differed immediately behind
the nose where on the pencil model an adverse gradient existed. At Mach
number 6 the pressure gradients were not so closely matched on the model
noses but were nearly the same behind the nose.

Surface roughness parameter.- For the screwthread surface, the vertical
peak-to-valley distance, H, was taken as a measure of the roughness scale.
For the scratch polish, H was defined as the peak-to-valley distance of
the deepest scratches. The roughness measure was made dimensionless by

2Tn reference 9 the temperature rise of the model skin due to aero-
dynamic heating was calculated for the pencil model. It was concluded that
during the short time of the model flight the skin temperature increased by
less than 1 percent, except in the immediate neighborhood of the tip where
a maximum temperature of 300° R above the average skin temperature was found
to be possible. Similar calculations for the hollow-tube models show that
leading-edge temperatures approximately 230° R at M = 3.5 and 670° R at
M = 7 above average skin temperature were possible. The calculations were
conservatively based in two respects: (1) heat flow to the skin was con-
sidered constant at the initial rate, and (2) the axial temperature gradi-
ent was the limiting value determined by assuming the specific heat of the
model material to be zero (i.e., the value necessary to conduct heat out
of the tip as fast as it is received). The calculated temperature
differences, therefore, represent maximum possible values,




forming the parameter (H/B)Jﬁ;, first proposed by Seiff, which relates

the roughness height to the boundary-layer thickness. For laminar flow

on a flat plate this parameter has the property of being independent of
distance from the leading edge, and is therefore convenient for specifying
the scale of distributed roughness on the straight tube. For configura-
tions such as the contoured tube and pencil model on which pressure gradi -
ents occur, the roughness parameter 1s a function of longitudinal position.
In figure 11 values of the roughness parameter on these models are compared,
at several Mach numbers, in terms of the corresponding constant value on a
flat plate. The parameter shows a wide variation on the nose of each model.
However, it is virtually constant behind the nose of the contoured tube,
and relatively so on the cylinder of the pencil model. It was deemed
desirable to specify the value of the roughness parameter on the body
cylinder in order to preserve 1ts independence of longitudinal position
and to avoid including implicitly in the parameter possible effects of

the nose contour on transition. For all data in which (H/B) Re was used
as an independent variable, transition occured on the body cylinder. It
was therefore somewhat arbitrarily decided to evaluate the roughness
parameter at the transition point, Xp. In the computations of (H/B)JE;,
the boundary-layer thicknesses, ©, were calculated by the method outlined
by Cohen and Reshotko in references 19 and 20.

Transition Measurements

Each spark shadowgraph taken of a model in flight provided a record
of the instantaneous location of transition at two diametrically opposed
points on the model. These points are dldentified in the representative
shadowgraphs of figure 12. Since the distance, xi, from the leading
edge to a local transition point is a function of both time and meridian
angle on the model, a statistical method was used to determine a single
value of xy by which to define the mean location of transition for a
given model flight. From a total of 7 shadowgraphs per flight a maximum
of 1h observations of transition-point location could be made. For an
erbitrary value of x the ratio of the number of observations of Xy
less than or equal to x, to the total number of observations, can be
formed. This ratio, n/N, represents statistically the fraction of the
boundary layer which is turbulent at the point x. By plotting n/N as
a function of x, a distribution curve is obtained which defines the
transition region. Typical distribution curves are illustrated in fig-
ure 13. For a given distribution curve the transition region lies between
the values of x corresponding to the intercepts of the curve at
n/N = 0 and n/N = 1. These two x positions are often referred to as
the beginning of transition and the end of the transition, respectively.
The value of x for which half of the observations showed the boundary
layer to be turbulent (n/N = 0.5) was taken as the length of the laminar
run, Xt. This was the characteristic length used to determine the
transition Reynolds number.



Factors Affecting Precision

Angle of attack.- A small amount of model pitching during flight was
inevitable. The maximum pitching amplitudes of the models used for data
were generally less than 1—1/20. As described in references 9 and 10 the
effect of angle of attack on the boundary-layer transition can be deter-
mined by plotting the individual values of xp, for a given model flight,
against the angle of attack. TFor pitching amplitudes greater than some
value depending on fineness ratio (about 30 for the hollow-cylinder models),
a correlation with angle of attack is found from which extrapolation to
zero angle of attack appears to glve reliable values of Xp corresponding
to zero angle of attack. For smaller pitching amplitudes the data do not
correlate with angle of attack and are thus considered to be independent
of small amounts of pitching. With respect to the hollow-cylinder mnodels,
only data in this latter category were used in the present report.

Leading-edge thickness.- While the leading edges of the tube models
were made as Tthin as possible commensurate with reasonable uniformity of
dimension, the large unit Reynolds number of the test resulted in leading-
edge-thickness Reynolds numbers of the order of 103, According to refer-
ence 21, transition Reynolds numbers prevailing for this leading-edge-
thickness Reynolds number could be perhaps 10 percent higher than those
prevailing for a mathematically sharp leading edge. Reference 22 would
indicate = somewhat greater difference. Accordingly, the possibility of
the presence of a small increment in Rp due to a finite leading-edge
thickness is recognized. Such an increment, however, should be nearly
constant in all of the data because of the uniformity of leading-edge
thickness among the models and therefore should have at most a secondary
effect on the observed trends of RT with Mach number and surface
roughness,

Leading-edge distortion due to heating.- It was necessary to consider
the possibility that distortion of the leading edge due to heating might
influence the transition measurements in an unknown and variable manner,
Caleulations based on the thermal properties of the material and the esti-
mated limits of leading-edge temperature showed that if the aluminum leading
edge of the straight tube should become bell-mouthed as a result of thermal
expansion, it would produce a local re-entrant angle of the cylinder profile
of the order of 1°, Similar distortion of the bronze leading edge of the
contoured tube would be approximately 50 percent greater. Double bow waves
were observed in the shadowgraphs of the straight tube. These might be
inferred as evidence that temperature distortion of the leading edge was
indeed affecting the boundary-layer flow. However, it was also observed
on one or two occasions when the leading-edge profile of the straight tube
was not square but rounded (under the same test conditions) that the double
bow wave did not appear. It is believed therefore that the double bow wave
was due to flow separation at the 90° leading-edge corner and subsequent
reattachment on the cylinder. Re-entrant flow disturbance due to leading-
edge distortion probably would be less than that due to reattachment. No
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double bow waves were observed with the contoured tube, probably because
the relatively high static pressure at the leading edge prevented flow
separation. The effect of leading-edge distortion in this case might be
through a slight alteration of the local pressure distribution.

In searching for direct evidence of a leading-edge distortion effect
it was anticipated that because of the transient nature of the heating
process and consequent progressive distortion of the leading edge the
local flow pattern, or the distance to transition, might show a progressive
variation with distance flown. However, variations of this sort were not
detected. It was concluded that any effects of leading-edge distortion
which might be present were both small and, for a given Mach number,
constant.

Repeatability of the transition measurements.- The general repeat-
ability of the data is dependent both upon the precision with which the
measurements are made and upon the duplication of all aerodynamic and
geometric conditions of the test for successive model flights. In these
tests the precision of a given data point depended principally on the
errors of measurement of xp. Errors of measurement of the other physical
quantities from which Mach number and Reynolds number were determined were
of lower orders of magnitude. The value of the characteristic transition
distance, ET, as determined by the method previously described, was found
to be relatively insensitive to the normal uncertainties in the choice of
local transition locations from the shadowgraphs. Repetitive determina-
tions of Xp usually agreed within approximately 1/8 inch. The corre-
sponding values of Rp therefore are considered to be accurate to within
+1/2 million,

An indication of the precision with which specified test conditions
can be met is given by the repeatability of data from successive models
flown under the same set of test conditions. Only a very limited number
of such data were obtained with the hollow-cylinder models and these were
all for the straight-tube configuration. The available comparisons indi-
cate a repeatability of Rp within *1 million for this configuration.
Similar comparisons for the pencil model indicate a repeatability of
for this model within *1/2 million. For the contoured tube it is believed
that because the potential leading-edge effects appear to be fewer on this
model than on the straight tube, the repestability of the data from this
configuration should be correspondingly more precise. It is believed to
approximate that for the pencil model.
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EXPERIMENTAL RESULTS

Gross Trends

In order to show graphically the ranges of Mach number and Reynolds
nunber in which the data fall, the transition data are plotted against
boundary-layer-edge Mach number in figure 14. The length Reynolds number
of the point at which turbulence was first observed is designated by the
open symbol. The length Reynolds number of the point beyond which no
laminar flow was observed is designated by the filled symbol. For a given
model flight each such pair of symbols marks the beginning and the end of
the transition region. This figure indicates an over-all trend of increas-
ing transition Reynolds number with increasing Mach number. The increase
in transition Reynolds number between Mach number 3 and Mach number 7 is
approximately threefold. Within this group of data the average length of
the transition region is roughly 7 million Reynolds number, and does not
appear to be a function of Mach number.

In this figure, surface roughness is a variable, the variation being
more or less random throughout the Mach number range. The transition
range for the roughest model (coarse screwthread) is labeled, and gives
a preliminary indication of the detrimental effect of large roughness.

Lines of minimum critical Reynolds number according to Van Driest
(ref. 14) are shown in figure 14 for the two values of wall to free-stream
temperature ratio which prevailed in the present test. The minimum critical
Reynolds number is defined in the stability theory of Lees and Lin (refs. 1k,
15, and 16) as the Reynolds number below which small disturbances in the
laminar boundary layer are damped, and above which they are amplified.
Transition is shown to have occurred, on models of the present test, at
Reynolds numbers below the minimum critical, and the trend of transition
Reynolds number with Mach number appears to be continuous through the
minimum critical Reynolds number.

Consideration has been given to the possible effects on the test
results of the simultaneous changes in wall to local static temperature
ratio and stream turbulence at Mg = 4.1l. It would be expected, because
of the higher cooling rate, that transition would occur at a higher
Reynolds number below Me = 4.1 than above it. At the same time the
absence of stream turbulence below Mg = 4.1 should tend to induce a
higher transition Reynolds number below Me = 4.1 than above. Therefore
the potentially detrimental effects on transition of the discontinuous
changes in temperature ratio and turbulence level® are additive and, if

~ 3The turbulence level of the wind-tunnel air stream is not known
quantitatively. However, the effective turbulence experienced by the
moving model is, because of its own velocity, only about a third of that
which would be experienced by a static model in the same air stream.
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significant, should be observable in the data. In figure 14 there is no
sensible discontinuity in the trend of the data at Mg = L.l. Likewise
in subsequent presentations there are no observable discontinuities at
Me = 4.1. It is concluded that such effects are not significant in the
present results. In reference 10 similar reasoning was used to reach the
same conclusion with respect to data for the pencil model.

Effect of Mach Number

To see more clearly the separate effect of Mach number on boundary-
layer transition the data are plotted separately for each configuration
and for constant roughness height, H. 1In figure 15 the variations of
transition Reynolds number with Mach number on the contoured tube, the
pencil model, and the straight tube are compared. The data of figure 15(®)
are reproduced from reference 10. Curves of constant surface roughness
(nominal thread height, H) are faired through the data. It is clear that
for a variety of test conditions, transition Reynolds number increases
with increasing Mach number. It is further apparent that the sensitivity
of transition Reynolds number to Mach number variation is dependent on the
ranges of Mach number and roughness prevalling. Point by point comparisons
between the data of figure 15(a), (b), and (c) indicate that transition
Reynolds numbers differ on the different configurations for given conditions
of Mach number and roughness height. In general the highest values of

occur cn the contoured tube, while the comparison between the pencil
model and straight tube appears inconclusive. However, a basis for a more
critical comparison of these data is established in the discussion section
and the effects of configuration are subsequently considered in more detail,

Effect of Surface Roughness

To show the effect of roughness on transition, the same data are
plotted in figure 16 with surface roughness height, H, as the independent
variable. Curves of constant Mach number are faired through the data.

The manner of fairing of figures 15 and 16 was influenced by the fact that
since each 1s a cross plot of the other, the fairings must be mutually
consistent. Figures 16(a) and (b) show that gross increases in roughness
height produce substantial reductions in transition Reynolds number. As
before, it may be observed that the sensitivity of transition Reynolds
number to roughness variation is dependent on the ranges of roughness and
Mach number prevailing.

An interesting phenomenon revealed in these figures is that for this
type of roughness, on the models having a favorable pressure gradient over
the nose at least, the maximum length of laminar run does not occur on the
smoothest surface, but on a surface having appreciable roughness. The
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optimum roughness is dependent on Mach number and is seen to be not far
below the roughness which will cause the laminar run to be a minimum.

The increase in Rp above the value for a smooth surface appears to be
approximately 10 to 15 percent of the smooth surface value. The relatively
large increase in Ry with increasing roughness height indicated by the
data in fipgure 16(a) for nominal Mach numbers of 3.0 and 3.7 are believed
to be exaggerated as the result of an anomalous roughness characteristic
affecting the two points having nominal roughness heights of 120 pin.

The values of Rp represented by these points are believed to be low
because the screwthread roughness on the corresponding models was imper-
fectly formed. In cutting the threads on these two models the lathe tool
threw up small ridges of nonuniform height along the thread peaks. These
ridges introduced a three-dimensional quality to the roughness on these
models. It is known that a three-dimensional roughness of a given height
has a greater effectiveness in causing transition than has a two-
dimensional roughness of the same height. For example, Carros observed
over a range of Mach numbers (see fig. 15(b)) that a sandblasted surface
having a maximum roughness height of 10C0 pin. caused earlier transition
than did a screwthread of 1500 uin. height. The roughness characteristic
just described was confined to the two models in question and therefore
does not explain the appearance of an optimum roughness at the higher Mach
numbers, This phenomenon is examined in more detail in the discussion
section.

Effect of Unit Reynolds Number

Published results of earlier transition experiments (e.g., refs. 23
through 27) show that, for small roughness, transition Reynolds number
increases as unit Reynolds number increases. For this reason 1t was con-
sidered important to hold unit Reynolds number constant in the present
experinent and this was done, within experimental accuracy, for most of
the data., Two situations developed, however, which made it desirable to
assess, at least roughly, the effect of unit Reynolds number variation
on R for values of U/v of the order of 3 million per inch. The
first was the fact that unit Reynolds number for the underground range
shots could not be controlled independently of Mach number. The second
was the desire to make comparisons between the present results and those
obtained with the pencil model at lower unit Reynolds numbers.

To provide a basis for assessment of the effect of unit Reynolds
number variation on the test results a very few data points were obtained
with the straight tube and pencil model to determine the variation of
transition Reynolds number with unit Reynolds number for constant Mach num-
ber and subcritical roughness height (i.e., roughness height less than that
required to influence transition). In figure 17 these data are compared
with results of the earlier investigations. The trend of Ry with (U/v),
observed in the present range of unit Reynolds numbers appears to be the
same as that observed previously on similar configurations at lower unit
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Reynolds numbers. It i1s to be emphasized that comparisons should be made
between slopes of the individual curves rather than between specific values
of Rp. On the log-log presentation of figure 17 most of the curves can
be approximated by the relation

U
1OglORT = Cl + Cgloglo (‘17)00

where C; and Cp are constants for a given curve. The value of C, 1is
dependent on many variables including Mach number, surface roughness, and
surface cooling. The slope, Co, appears to be considerably less sensitive
to these variables (at least for subcritical roughness). It is believed
that figure 17 provides a satisfactory basis for accounting for the effects
of relatively small differences in (u/v), in comparisons of transition
data obtained at different unit Reynolds numbers, if roughness is subcrit-
ical, The average value of C, for all the curves of figure 17 is 0.L0.
This value was used to adjust data for three of the underground range shots.

DISCUSSION

Mach Number and Roughness Effects on the Contoured Tube

Cross plots of the data.~ To define precisely each of the highly
nonlinear curves of figures 15 and 16 would require many more data points
than were obtained in the present investigation. Therefore, in order to
gain a more complete understanding of the behavior of boundary-layer
transition under varying Mach number and roughness conditions, advantage
was taken of the fact that figures 15 and 16 are mutual cross plots.
Attention was focused on the data from the contoured tube since these were
the most complete and were obtained under the most precisely controlled
conditions. Two cross-plot families of curves were constructed about the
data of figures 15(a) and 16(a). The fairings of these curve families
were iterated between the figures first assuming the data to have absolute
precision and then allowing the curves to miss individual data points by
the amount necessary to obtain quantitative consistency of the curve
families. In meking these plots, surface roughness was made dimensionless
through the use of the parameter (H/é)jﬁ; discussed under test conditions.
The quantitatively consistent cross plots resulting from this procedure are
shown in figures 18 and 19. Unit Reynolds number is constant and equal
to 3.1 million per inch.?% These figures are discussed separately in the
following paragraphs.

“Transition Reynolds numbers of three data points from the underground
range, for which surface roughness was below critical values, were adjusted
on the basis of figure 17 to correspond to this unit Reynolds number.
Single-flagged symbols identify these points.

Three other data points from the range (double-flagged symbols), for
which roughness was supercritical, were not adjusted because no suitable
basis was available. Data from reference 6 indicate qualitatively that
such adjustments should be smaller than - or even of opposite sign to - those
for subcritical roughness.
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Effect of Mach number.- In figure 18, transition Reynolds number is
plotted against local Mach number for constant values of the roughness
parameter. According to this figure, as Mach number increases, for a
given surface roughness, RT increases slowly along the curve A-A until
a critical Mach number is reached; Rp then increases rapidly until a
second critical Mach number is reached at the envelope curve B-B; Ry
then increases more slowly with the rate of increase approaching a nearly
constant value along curve C-C with further increase in Mach number.

On a sufficiently rough surface, then, Rp 1ncreases with M, at a rate
indicated by the curve A-A, and on a sufficiently smooth surface Ry
increases with Me at a rate indicated by the curve C(C-C. The reason for
this difference in rate is not clearly understood. It has been pointed

out in reference 10 that for a constant wall to local static temperature
ratio the relative cooling effect of the wall increases with Mach number.
This fact is evident also from an examination of figure 9. For such a
condition it would be expected on the basis of stability theory that the
boundary layer would remain laminar to higher Reynolds numbers as Mach
number increases. This is in agreement with the observed variation., The
effect of heat-transfer variation (surface cooling) is implicit in the

Mach number variation, however, and therefore it cannot be ascertained

just what fraction of the observed increase in Rp 1s due to increasing
heat transfer. Results from references 4, 5, 7, and 25 are compared with
the present results for the contoured tube in figure 20, where the curve
C-C of figure 18 is reproduced., The effect of roughness is believed to

be insignificant in these data, at least at the higher Mach numbers, so
that the data are most nearly comparable to curve C-C. Other test
conditions (e.g., unit Reynolds number, initial pressure gradient) differ
significantly, however, and the curves cannot be quantitatively compared.
They should be compared only as to trend. The variation observed in the
data of reference 7 for the cooled cone (T,/Te = const) i1s similar to that
observed in the present test. On the other hand results from the insulated
cone and flat plates show a trend of decreasing Ry with increasing Mach
number below a Mach number of about 3.8 but a reversal of the trend above
this Mach number. It appears therefore that while the differences in trend
below Mg = 3.8 may be due to the effect of heat transfer, other effects
are also present which in addition to surface cooling tend to delay
transition as Mach number increases, These effects are as yet unidentified.

Effect of roughness.- In figure 19, transitlon Reynolds number is
plotted against the roughness parameter, (H/B) Re, for constant values of
Mach number. As the roughness parameter increases, for a gliven Mach number,
Rp increases gradually to a maximum at some critical value of the roughness
parameter; Rp then decreases rapidly until a second critical value of the
roughness parameter is reached, after which Ry tends to remain constant
(at least at Mg = 3) with further increase in” (H/®5)/Re. Figure 19 indi-
cates the existence of two families of critical combinations of Mach number
and surface roughness. One family represents conditions for maximum
transition Reynolds number. The other family represents the minimum rough-
ness which gives the minimum value of transition Reynolds number. The loci
of these combinations are indicated in the figure by the dashed lines.
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These lines separate the plot into three distinct regions of transition

Reynolds number variation: Region I in which Ry is relatively low and

is only moderately sensitive to changes in Mach number; region II in which
varies rapidly with either Mach number or surface roughness; region III

in which Rp is relatively high and has intermediate sensitivity to changes

in Mach number and roughness.

Optimum roughness phenomenon.- The appearance of an optimum roughness
height corresponding to the maximum laminar run at a given Mach number was
unexpected. The mechanism which operates to produce this phenomenon is
not yet understood. It is tentatively thought to be associated with the
shape of the roughness. According to figures 18 and 19 this effect becomes
increasingly significant as Mach number increases, The only other evidence
yet found of the existence of such a phenomenon comes from a recent investi-
gation of roughness effects in low speed flow. In reference 28 the transi-
tion Reynolds numbers on a two-dimensional surface with and without a single
transverse wire were compared at Mg < 0.17. In two instances, where the
wire was relatively close to the leading edge, the data show that an optimum
ratio of roughness height to laminar-boundary-layer momentum thickness
occurred in a way very similar to that observed in the present investigation.
There was no significant increase in transition Reynolds number, however.

A possible mechanism whereby the transverse screwthread type of rough-
ness could either produce or damp disturbances in the boundary layer is
sugegested by the results of some experiments with single transverse rec-
tangular cutouts reported in references 29 and 30, In these experiments
acoustic radiation (periodic pressure waves) was observed to emanate from
the cutouts for certain combinations of Mach number and cutout dimensions.
It was shown that in the Mach number range 0.4 to 1.5 the frequency of the
radiation increased with increasing Mach number if the gap width was held
constant and that the gap width necessary to maintain a constant frequency
increases with increasing Mach number. Vortex motion was observed within
the cutout, and under certain conditions vortices appeared to be shed
periodically from the cutout. In the Ames supersonic free flight wind
tunnel, acoustic radiation occasionally has been observed to emanate from
screwthreads and transverse V-shaped grooves on models in supersonic free
flight. An example of this radiation is illustrated in figure 21, which
shows a short thin-walled hollow cylinder flying at a Mach number of 1.23.
The radiation originates at a group of five circumferential V-grooves,
each 0,003-inch deep, located a short distance behind the leading edge.

It may be inferred that the flow pattern in each groove of a screwthread
is similar to the flow in the rectangular cutout. A captive vortex in a
thread groove could act as an energy reservolr which under the proper
flow conditions could absorb and redistribute energy perturbations in the
boundary layer and thus be a damping device, The vortex, whose size is
determined by the size of the groove, must have the proper characteristics
to resonate with the boundary-layer perturbations. If the groove were
much too small, the vortex would not form. If the groove were much too
large, the vortex might become unstable and shed into the boundary layer
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causing a large disturbance (acoustic radiation). Since the energy which
drives the vortex comes from the main stream, it might be expected that

the combination of Mach number and groove size required to produce resonance
damping would vary qualitatively in the same way as that required to produce
acoustic radiation. Figure 19 indicates that as Mach number increases the
groove size required to obtain the maximum laminar run also ilncreases, SO
that this combination does in fact vary in a manner consistent with the
above expectation. In the case of the transverse wire of reference 28 a
vortex flow in the separated regions immediately forward and aft of the wire
could provide resonance damping of boundary-layer oscillations. On the
other hand, the shape of the curve for the sandblasted surface in fig-

ure 15(b) makes it appear that an optimum roughness height may occur for
this type of roughness. If such is the case then the above hypothesis

must be modified.

In any event the transverse groove or screwthread, under the present
test conditions, has the demonstrated ability to prolong laminar flow to
a higher Reynolds number than can an extremely smooth surface. At the
higher Mach numbers the optimum roughness resulted in transition Reynolds
numbers 15 percent higher than would be obtained with much smaller roughness.
The optimum roughness height at these Mach numbers was 8 to 10 percent of
the laminar boundary-layer thickness at transition. The corresponding
full-scale roughness height could be of the order of 0.1 inch. This result
suggests the possibility of submerging miscellaneous surface imperfections
which are potential sources of turbulence (such as Joints and rivet heads)
by applying a uniform transverse groove finish to the surface of an assem-
bled wing or body. In addition, based on the theoretical results of
Chapman (ref. 31) there appears the possibility of reducing total heat
transfer and total skin friction by using the continuous screwthread to
produce controlled regions of separated flow. Such a possibility would
seem to warrant further investigation.

Critical combinations of Mach number and roughness parameter.- Curves
of the critical combinations of Mach number and roughness parameter observed
in figure 19 are plotted in figure 22. The three regions into which the
curves divide this plot correspond to those of figure 19; so that under the
present test conditions, for combinations of Mach number and roughness
parameter which fall into Reglon I, the presence of roughness will result
in minimum values of Rp while, for combinations which fall into
Region III, roughness will have no adverse effect on Rq. Figure 22 shows
rather clearly that as Mach number increases the laminar boundary layer is
able to negotiate increasingly rough surfaces before transition is influ-
enced adversely by the roughness. It is also evident that the incremental
increase in roughness necessary to reduce Rp to a minimum (Region II)
becomes greater as Mach number increases. In other words the adverse
effect of roughness on transition is not as abrupt at high Mach numbers
as it is at low Mach numbers.
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Comparison of Results From the Three Models

Although the curves of figures 15 and 16 for the pencil model and
straight tube do not present as complete nor as consistent a pattern of
variation as do the curves for the contoured tube, it is apparent that
the qualitative effects of Mach number and surface roughness on transition
Reynolds number are similar on all three models, and it is possible through
comparison with the complete patterns of figures 18 and 19 to identify
these data with respect to the trend regions defined in figures 19 and 22.
Such indications as there are of the critical values of roughness height
and Mach number for the pencil model and straight tube, when compared with
the corresponding values for the contoured tube, suggest that these values
do not vary greatly among the three configurations considered. However,
rather consistent differences in transition Reynolds number are seen to
exist between the curves for one configuration and the corresponding curves
for another. For example, looking at figures 15 and 16, parts (a) and (b),
it is apparent that an upward translation of approximately 3 million
Reynolds number of the curves for the pencil model would put them into
closer agreement with those for the contoured tube. With respect to the
straight tube, no models having large roughness were tested. Figure l6(c)
shows that the data for this model were confined to roughness values
generally less than those which figure 15(a) shows to be optimum for the
contoured tube. This suggests that the straight-tube data for the higher
Mach numbers at least, should fall within Region IIT as defined in fig-
ures 19 and 22. It follows that the straight-tube data in figure 15(c)
should be comparable to the curve C-C of figure 18. A comparison shows
the agreement to be reasonably good. As was observed with the pencil
model, however, the agreement would be improved if the data for the
straight tube were translated upward by approximately 3 million Reynolds
number. In the case of the pencil model, approximately a third of this
difference can be attributed to the difference in (U/v)m. Otherwise these
roughly constant differences in RT between the curves of one configura-
tion and those of another reflect the influence of configuration change on
the environment of the laminar boundary layer.

Among the three configurations there are three important differences
in the boundary-layer environment:

1. Pressure gradient
2. Relative surface roughness on the nose
3. Local flow separation at the leading edge

The first two of these are apparent from figures 10 and 11.

Considering pressure gradient alone, it would be expected that
transition would be delayed on the contoured tube and pencil model to
higher Reynolds numbers than on the straight tube. On the other hand,
the roughness over the noses of these two models, in terms of boundary-
layer thickness, is considerably greater than on the straight tube. This
condition would be expected to have a detrimental effect which would oppose
the favorable effect of pressure gradient.
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The adverse pressure gradient aft of the nose of the pencil model
is small compared to the favorable gradient over the nose. At Mach
number 6 it almost disappears. The major difference, therefore, between
the flow conditions over the pencil model and the contoured tube is in the
relative surface roughness over the nose. The relative roughness over the
nose of the pencil model is in the neighborhood of 50 to 75 percent greater
than that over the nose of the contoured tube. This difference could be
responsible for the lower transition Reynolds numbers on the pencil model,

The third difference in boundary-layer environment is that of local
flow separation at the leading edge. This local separation at the leading
edge of the straight tube is illustrated in figures 12(d) and (e) where
the separation bubble is betrayed by the double bow wave. The contoured
tube (figs. 12(a), (b), and (c)) and the pencil model do not show evidence
of leading-edge separation. In spite of the sharpness of the leading edges
and the large value of unit Reynolds number, local separation occurred on
all models of the straight tube. While the effect of this local separation
on the transition Reynolds number is undoubtedly adverse, its magnitude is
not known., It is therefore not possible to use the straight-tube results
as a standard by which to Jjudge the relative importance of pressure
gradient and roughness on the other two models. It is believed, however,
that this effect could have reduced significantly the laminar flow on the
straight tube. It is believed to have been responsible for the greater
scatter in Rp observed for this model.

CONCLUSIONS

The effects of Mach number and a screwthread form of distributed two-
dimensional surface roughness on boundary-layer transition were investi-
gated on hollow-cylinder models in free flight at Mach numbers between
2.8 and 7. The model surfaces were cold relative to stagnation temperatures
and the rate of boundary-layer cooling was a function of Mach number. The
observed effects were compared with results previously obtained on a slender
ogive-cylinder. The results of these tests are summarized in the following
conclusions:

1. Transition Reynolds number increased with increasing Mach number
for all magnitudes of roughness tested.

2., The minimum size of roughness which will influence transition
increases with increasing Mach number. The effect of a glven roughness
size was found to depend strongly on the Mach number.
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3. For a given Mach number, an optimum value of roughness height

was found which gave a maximum laminar run 10 to 15 percent greater than
was obtained with very small roughness. This optimum roughness height
at the higher Mach numbers was 8 to 10 percent of the laminar boundary-
layer thickness at transition.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 22, 1958
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(a) Shadow profile, 100X.

ot
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S

(b) Wire shadow, 1000X.

Figure 4.- Photomicrographs of a typical screwthread; depth = 0.0003 inch;
pitch = 0.0015 inch.
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(b) Coarse screwthread, 00,0021 inch deep; profile; 100X.

(c) Beginning of screwthread; thread depth 0.0003 inch; wire shadow; 514X,

Figure 5,- Photomicrographs of screwthreads on test models.
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(a) 2/0 emery paper. Maximum scratch depth approximately 50 pin.;
wire shadow; 1000X,

i

&7

(b) 4/0 emery paper. Maximum scratch depth approximately 8 pin.;
wire shadow; 1000X.

() h/o emery paper. Interferogram; fringe spacing = 10 pin.; 200X.

Figure 7.- Photomicrographs of scratch-polished surfaces on 7075-T6
alluminum alloy.
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(a) Forward face of the leading edge of a contoured-tube model at maximum
thickness; thickness = 0.00045 inch; 200X.

(b) Forward face of the leading edge of a contoured-tube model at minimum
thickness; thickness = 0.0003 inch; 200X.
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(c) Outer cylindrical surface of a straight-tube model at the leading edge;
2/0 finish; wire shadow; 51kX.

Figure 8.- Photomicrographs of representative model leading edges.



32

*IokeT AIepunoq JIBUTWET 8yl JO A1TTTa®as aj3oT7dwoo I0I squsuwsaTnbal TBOT19I09U1 93 07 pue

OT 2°uUaIsal JO 2803 09 1891 audsaxd sy Jo suolaTpuod aamgeiadwuay ayar Jo uosTaedwo) -*4 aanITJd

W
6 8 L 9 S ¢ 2 0
O'l-
" A31qols  a39)dwiod
N jo uoibas (po1au09y
TN
//% w.l
1
Ln—.l ;n_.
v-
(Z1394) w7 g uung
f$30UDQ4NJSIP  {DUOISUBWIP — OM} O}
joadsas ypm  Appgoys  943|dwod U0  |DOWIAD
(b1 J9Y) 2-
489140 UDA “AJQDIS 349|dWOD JOJ [POULD) e e — — — - — =
(O1°49Y) i3} |apow -|1ouad jo abuoy - —
}s9} juasaud jo abuoy
0



33

*STopoW 4597 aU3 U0 SUOTINQTIZSTP aanssaxd TedT32I08Yl, -°*QT 2an8Td

[9pow IoUdd — —— ——
agn} painojuol

¢0-



34

26 (
2.2

Mo Wi
|8 7.70 1.8

6.32
///////465

h 447 1.0
at plate 14k 392 "
2,00 "/ /
7

(a) Contoured tube.

P
00| T [orlx
SIE
m o

——

r._Ix -

30

1
0] | 2 3 4 5 6 7 8
X
l
(b) Pencil model.

Figure 1l.- Relative roughness of a given element on the contoured tube and
pencil model compared to its roughness on a flat plate.
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Figure 21.- Periodic pressure wavelets due to acoustic radiation from
annular grooves cut in the outer surface of a short thin-walled
hollow cylinder in free flight at Mach number 1.23,
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